Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693114

RESUMO

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Assuntos
Fibrose , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Miócitos Cardíacos , Organoides , Humanos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Organoides/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miocárdio/patologia , Miocárdio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia
2.
Exp Mol Med ; 53(7): 1192-1204, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34316018

RESUMO

Loss-of-function variant in the gene encoding the KCNQ4 potassium channel causes autosomal dominant nonsyndromic hearing loss (DFNA2), and no effective pharmacotherapeutics have been developed to reverse channel activity impairment. Phosphatidylinositol 4,5-bisphosphate (PIP2), an obligatory phospholipid for maintaining KCNQ channel activity, confers differential pharmacological sensitivity of channels to KCNQ openers. Through whole-exome sequencing of DFNA2 families, we identified three novel KCNQ4 variants related to diverse auditory phenotypes in the proximal C-terminus (p.Arg331Gln), the C-terminus of the S6 segment (p.Gly319Asp), and the pore region (p.Ala271_Asp272del). Potassium currents in HEK293T cells expressing each KCNQ4 variant were recorded by patch-clamp, and functional recovery by PIP2 expression or KCNQ openers was examined. In the homomeric expression setting, the three novel KCNQ4 mutant proteins lost conductance and were unresponsive to KCNQ openers or PIP2 expression. Loss of p.Arg331Gln conductance was slightly restored by a tandem concatemer channel (WT-p.R331Q), and increased PIP2 expression further increased the concatemer current to the level of the WT channel. Strikingly, an impaired homomeric p.Gly319Asp channel exhibited hyperactivity when a concatemer (WT-p.G319D), with a negative shift in the voltage dependence of activation. Correspondingly, a KCNQ inhibitor and chelation of PIP2 effectively downregulated the hyperactive WT-p.G319D concatemer channel. Conversely, the pore-region variant (p.Ala271_Asp272del) was nonrescuable under any condition. Collectively, these novel KCNQ4 variants may constitute therapeutic targets that can be manipulated by the PIP2 level and KCNQ-regulating drugs under the physiological context of heterozygous expression. Our research contributes to the establishment of a genotype/mechanism-based therapeutic portfolio for DFNA2.


Assuntos
Surdez/genética , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Surdez/etiologia , Feminino , Genótipo , Células HEK293 , Humanos , Masculino , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Linhagem , Fenótipo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Potássio/metabolismo , Domínios Proteicos
3.
J Cell Physiol ; 236(5): 3946-3962, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33164232

RESUMO

The epigenome has an essential role in orchestrating transcriptional activation and modulating key developmental processes. Previously, we developed a library of pyrrole-imidazole polyamides (PIPs) conjugated with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, for the purpose of sequence-specific modification of epigenetics. Based on the gene expression profile of SAHA-PIPs and screening studies using the α-myosin heavy chain promoter-driven reporter and SAHA-PIP library, we identified that SAHA-PIP G activates cardiac-related genes. Studies in mouse ES cells showed that SAHA-PIP G could enhance the generation of spontaneous beating cells, which is consistent with upregulation of several cardiac-related genes. Moreover, ChIP-seq results confirmed that the upregulation of cardiac-related genes is highly correlated with epigenetic activation, relevant to the sequence-specific binding of SAHA-PIP G. This proof-of-concept study demonstrating the applicability of SAHA-PIP not only improves our understanding of epigenetic alterations involved in cardiomyogenesis but also provides a novel chemical-based strategy for stem cell differentiation.


Assuntos
DNA/metabolismo , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Organogênese , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Endoderma/metabolismo , Epigênese Genética/efeitos dos fármacos , Células HEK293 , Humanos , Imidazóis/farmacologia , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Motivos de Nucleotídeos/genética , Nylons/farmacologia , Pirróis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
4.
Korean J Physiol Pharmacol ; 24(6): 529-543, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093274

RESUMO

In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.

5.
Pharmaceutics ; 12(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365589

RESUMO

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.

6.
Korean J Physiol Pharmacol ; 23(6): 539-547, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31680776

RESUMO

Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced [Ca2+]i transient and reduced sarcoplasmic reticulum (SR) Ca2+ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR Ca2+-ATPase subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises Ca2+ signaling by downregulating the expression of DHPR and SERCA proteins.

7.
Stem Cells Dev ; 28(1): 13-27, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358491

RESUMO

The commitment of pluripotent stem cells to the cardiac lineage has enormous potential in regenerative medicine interventions for several cardiac diseases. Thus, it is necessary to understand and regulate this differentiation process for potential clinical application. In this study, we developed defined conditions with chemical inducers for effective cardiac lineage commitment and elucidated the mechanism for high-efficiency differentiation. First, we designed a robust reporter-based platform to screen chemical inducers of cardiac differentiation in the mouse P19 teratocarcinoma cell line. Using this system, we identified two natural alkaloids, lupinine and ursinoic acid, which enhanced cardiomyocyte differentiation of P19 cells in terms of beating colony numbers with respect to oxytocin, and confirmed their activity in mouse embryonic stem cells. By analyzing the expression of key markers, we found that this enhancement can be attributed to the early and rapid induction of the Wnt signaling pathway. We also found that these natural compounds could not only supersede the action of the Wnt3a ligand but also had a very quick response time, allowing them to act as efficient cardiac mesoderm inducers that subsequently promoted cardiomyocyte differentiation. Thus, this study offers a way to develop chemical-based differentiation strategy for high-efficiency cardiac lineage commitment, which has an advantage over currently available methods with complex medium composition and parameters. Furthermore, it also provides an opportunity to pinpoint the key molecular mechanisms pivotal to the cardiac differentiation process, which are necessary to design an efficient strategy for cardiomyocyte differentiation.


Assuntos
Diferenciação Celular , Miócitos Cardíacos/efeitos dos fármacos , Esparteína/análogos & derivados , Triterpenos/farmacologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Esparteína/farmacologia , Via de Sinalização Wnt
8.
Biomaterials ; 193: 30-46, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30554025

RESUMO

Use of stem cells in regenerative medicine holds great promise in treating people suffering from various otherwise incurable ailments. Direct conversion of somatic cells to other lineages thereby bypassing the intermediate pluripotent state has enormous applicability with respect to time requirement for conversion as well as safety issues. Among various approaches, chemical induced cell conversion is safe yet effective, and the use of small molecules has thus increased greatly in recent years in regenerative fields due to easy applicability, efficient scalability, and consistent reproducibility. Here we report a combination of small molecules capable of converting mouse fibroblasts into skeletal muscle-like cells (SMLCs) without requiring ectopic transcription factor expression. We observed that a combination of chemicals is necessary and sufficient to convert mouse fibroblast to SMLCs that have functional similarity to skeletal muscles. In addition, we also found that cytokines responsible for modulating several key signaling pathways enhance the maturation of converted SMLCs into multinucleated myocytes. Epigenetic analysis revealed that this conversion is accomplished by an epigenetic overhaul, followed by activation of key signal pathways responsible for activating skeletal specific loci. We further observed that human adipocyte-derived stem cells can be converted into SMLCs under conditions similar to that of fibroblasts. This study not only provides an example of chemical induced direct conversion, but also underlines the key signaling pathways that are needed to induce mesodermal lineages and muscles from pleotropic type cells.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Adipócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Medicina Regenerativa/métodos
9.
Sci Rep ; 8(1): 16659, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413759

RESUMO

Mutations in potassium voltage-gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of nonsyndromic hearing loss, deafness nonsyndromic autosomal dominant 2 (DFNA2). We performed whole-exome sequencing for 98 families with hearing loss and found mutations in KCNQ4 in five families. In this study, we characterized two novel mutations in KCNQ4: a missense mutation (c.796G>T; p.Asp266Tyr) and an in-frame deletion mutation (c.259_267del; p.Val87_Asn89del). p.Asp266Tyr located in the channel pore region resulted in early onset and moderate hearing loss, whereas p.Val87_Asn89del located in the N-terminal cytoplasmic region resulted in late onset and high frequency-specific hearing loss. When heterologously expressed in HEK 293 T cells, both mutant proteins did not show defects in protein trafficking to the plasma membrane or in interactions with wild-type (WT) KCNQ4 channels. Patch-clamp analysis demonstrated that both p.Asp266Tyr and p.Val87_Asn89del mutant channels lost conductance and were completely unresponsive to KCNQ activators, such as retigabine, zinc pyrithione, and ML213. Channels assembled from WT-p.Asp266Tyr concatemers, like those from WT-WT concatemers, exhibited conductance and responsiveness to KCNQ activators. However, channels assembled from WT-p.Val87_Asn89del concatemers showed impaired conductance, suggesting that p.Val87_Asn89del caused complete loss-of-function with a strong dominant-negative effect on functional WT channels. Therefore, the main pathological mechanism may be related to loss of K+ channel activity, not defects in trafficking.


Assuntos
Surdez/genética , Sequenciamento do Exoma/métodos , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Mutação , Adulto , Sequência de Aminoácidos , Criança , Análise Mutacional de DNA , Surdez/patologia , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Linhagem
10.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705970

RESUMO

Polyporus brumalis is able to synthesize several sesquiterpenes during fungal growth. Using a single-molecule real-time sequencing platform, we present the 53-Mb draft genome of P. brumalis, which contains 6,231 protein-coding genes. Gene annotation and isolation support genetic information, which can increase the understanding of sesquiterpene metabolism in P. brumalis.

11.
Sci Rep ; 7: 40872, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098199

RESUMO

As current clinical approaches for lower urinary tract (LUT) dysfunction such as pharmacological and electrical stimulation treatments lack target specificity, thus resulting in suboptimal outcomes with various side effects, a better treatment modality with spatial and temporal target-specificity is necessary. In this study, we delivered optogenetic membrane proteins, such as channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to bladder smooth muscle cells (SMCs) of mice using either the Cre-loxp transgenic system or a viral transfection method. The results showed that depolarizing ChR2-SMCs with blue light induced bladder contraction, whereas hyperpolarizing NpHR-SMCs with yellow light suppressed PGE2-induced overactive contraction. We also confirmed that optogenetic contraction of bladder smooth muscles in this study is not neurogenic, but solely myogenic, and that optogenetic light stimulation can modulate the urination in vivo. This study thus demonstrated the utility of optogenetic modulation of smooth muscle as a means to actively control the urinary bladder contraction with spatial and temporal accuracy. These features would increase the efficacy of bladder control in LUT dysfunctions without the side effects of conventional clinical therapies.


Assuntos
Sintomas do Trato Urinário Inferior/patologia , Optogenética , Bexiga Urinária/fisiologia , Animais , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Dinoprostona/farmacologia , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/efeitos da radiação , Halorrodopsinas/genética , Técnicas In Vitro , Luz , Sintomas do Trato Urinário Inferior/veterinária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Contração Muscular/efeitos da radiação , Mutagênese Sítio-Dirigida , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Bexiga Urinária/citologia , Micção
12.
Environ Microbiol ; 19(2): 584-597, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27554843

RESUMO

Cells usually cope with oxidative stress by activating signal transduction pathways. In the budding yeast Sacchromyces cerevisiae, the high osmolarity glycerol (HOG) pathway has long been implicated in transducing the oxidative stress-induced signal, but the underlying mechanisms are not well defined. Based on phosphorylation of the mitogen-activated protein kinase (MAPK) Hog1, we reveal that the signal from hydrogen peroxide (H2 O2 ) flows through Ssk1, the response regulator of the two-component system of the HOG pathway. Downstream signal transduction into the HOG MAPK cascade requires the MAP kinase kinase kinase (MAP3K) Ssk2 but not its paralog Ssk22 or another MAP3K Ste11 of the pathway, culminating in Hog1 phosphorylation via the MAP2K Pbs2. When overexpressed, Ssk2 is also activated in an Ssk1-independent manner. Unlike in mammals, H2 O2 does not cause endoplasmic reticulum stress, which can activate Hog1 through the conventional unfolded protein response. Hog1 activated by H2 O2 is retained in the cytoplasm, but is still able to activate the cAMP- or stress-responsive elements by unknown mechanisms.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Glicerol/metabolismo , MAP Quinase Quinase Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Concentração Osmolar , Pressão Osmótica , Fosforilação , Transdução de Sinais/fisiologia
13.
Sci Rep ; 6: 26687, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27220918

RESUMO

There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Relaxamento Muscular , Mioblastos/metabolismo , Nanotubos de Carbono/química , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Engenharia Tecidual/métodos
14.
Environ Microbiol ; 17(3): 656-69, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24761971

RESUMO

Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.


Assuntos
Ácido Acético/farmacologia , Farmacorresistência Fúngica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Ácido Acético/metabolismo , Alelos , Aminoácidos/metabolismo , Sequência de Bases , Etanol/metabolismo , Perfilação da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Mutação , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Ureia/metabolismo
15.
Appl Microbiol Biotechnol ; 97(18): 8227-38, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23709042

RESUMO

Previously, it was shown that overexpression of either of two SPT15 mutant alleles, SPT15-M2 and SPT15-M3, which encode mutant TATA-binding proteins, confer enhanced ethanol tolerance in Saccharomyces cerevisiae. In this study, we demonstrated that strains overexpressing SPT15-M2 or SPT15-M3 were tolerant to hyperosmotic stress caused by high concentrations of glucose, salt, and sorbitol. The enhanced tolerance to high glucose concentrations in particular improved ethanol production from very high gravity (VHG) ethanol fermentations. The strains displayed constitutive and sustained activation of Hog1, a central kinase in the high osmolarity glycerol (HOG) signal transduction pathway of S. cerevisiae. However, the cell growth defect known to be caused by constitutive and sustained activation of Hog1 was not observed. We also found that reactive oxygen species (ROS) were accumulated to a less extent upon exposure to high glucose concentration in our osmotolerant strains. We identified six new genes (GPH1, HSP12, AIM17, SSA4, USV1, and IGD1), the individual deletion of which renders cells sensitive to 50 % glucose. In spite of the presence of multiple copies of stress response element in their promoters, it was apparent that those genes were not controlled at the transcriptional level by the HOG pathway under the high glucose conditions. Combined with previously published results, overexpression of SPT15-M2 or SPT15-M3 clearly provides a basis for improved tolerance to ethanol and osmotic stress, which enables construction of strains of any genetic background that need enhanced tolerance to high concentrations of ethanol and glucose, promoting the feasibility for VHG ethanol fermentation.


Assuntos
Mutação , Pressão Osmótica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Alelos , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glicerol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...